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Nonlinear Viscoelastic Behavior of Polymer Melts 

A. J. DE VRIES and J. TOCHON, Cie de Saint-Gobuin, Centre de Reckrches, 
Antony (Seine), France 

Introduction 

The general theory of linear viscoelasticity,' based on Maxwell's re- 
laxation theory, has been applied with considerable success to the behavior 
of various materials under small stresses. A nonlinear generalization of the 
theory should be highly useful in order to describe the viscoelastic behavior 
under circumstances where the deformations are large, e.g., in the case of 
flow of polymer melts. Prandt12 was one of the h t  to try to evolve a 
general theory of nonlinear viscoelasticity based on a semimolecular model. 
He was able to predict quantitatively the stress dependence of flow and re- 
laxation phenomena, but no experimental verification of the theory seems 
to have been attempted at the time. It can be shown however that, as far 
as the influence of shear stress on viscosity is concerned, Prandtl's result, 
under certain simplifying conditions, is similar to that derived by Weissen- 
bergs with the aid of a more formal mathematical theory. An identical 
expression was deduced by Eyring' from his theory of rate processes and, in 
its most general form, was shown to describe correctly a large number of 
experimental 

More recently Brinkman and Schwarzls.g have elaborated a somewhat 
different model in order to describe nonlinear creep of viscoelastic solids. 
Here again the influence of stress is similar to that predicted by the older 
theories treating non-Newtonian flow. 

It is the object of this paper to present a set of equations, derived from 
Eyring's theory, which describe nonlinear flow and relaxation in terms of a 
characteristic relaxation spectrum to be determined from measurements in 
a region where the behavior is approximately linear. The method will be 
used to interpret the behavior in simple shear of a number of various 
polymer melts. 

Experimental 

All measurements were made by means of the Saint-Gobah microcon- 
sistometer, a cone-and-plate viscometer designed by Kepes.l0 After pre- 
liminary centrifugation at  5000 rpm of the sample of molten polymer under 
a NZ atmosphere, the sample was placed in the viscometer and its flow 
curve measured a t  constant temperature. The torque exerted on the coni- 
cal surface was determined for increasing values of the shear rate y ranging 
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Fig. 1. Viscosity of polydimethylsiioxme as a function of shear rate: (0) experimental 
valuea; (-) curve calculated from relaxation spectrum. 

from to lo2 set.-'. Shear stress u and viscosity (7 = a/+) were 
calculated from the observed values of the torque. The torsion head eon- 
sisting of five superposed torsion wires of decreasing diameter, made it 
possible to determine shear stresses in the range of 10L106 dynes/cm.2 
Relaxation of shear stress a t  constant deformation after the rotation had 
been stopped was determined by measuring the torque as a function of time 
without displacement of the During all measurements the sample 
was surrounded by an N2 atmosphere in order to prevent any oxidative 
degradation of the polymer. Results of the flow and relaxation measure- 
ments of various polymer melts are plotted in Figures 1-10. 
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Fig. 2. Viscosity of polystyrene A as a function of shear rate: (0) experimental values; 
(-) curve calculated from relaxation spectrum. 
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Fig. 3. Viscosity of polyethylene A aa a function of shear rate: (0) experimental values; 
(-) curve calculated from relaxation spectrum. 

Nonlinear Relaxation Theory 

The nonlinearity of general relaxation theories like those of Prandt12 and 
of Eyringa arises from the influence of the external force on the potential 
barriers separating the equilibrium positions of molecules or molecular 
groups. Under certain simplifying assumptions (all potential barriers 
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Fig. 4. Viscosity of polyethylene B aa a function of shear rate: (0 )  experimental values; 
(-) curve calculated from relaxation spectrum. 
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Fig. 5. Viscosity of Marlex polyethylene aa a function of shear rate: (0) experimental 
values; (-) curve fitted by mema of Ree and Eyring’s trial-and-error method. 
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Fig. 6. Stress relaxation in polydimethyldoxane: (0) experimental values; (-) 
e w e  fitted by means of Prony’s method. 
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Fig. 7. Stress relaxation in polystyrene A: (0, 0) experimental values; lower curve 
fitted by graphical analysis; upper curve calculated from relaxation spectrum. 
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Fig. 8. Stress relaxation in polyethylene A: (0, 0 )  experimental values; lower curve 
fitted by graphical analysis; upper curve calculated from relaxation spectrum. 
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Fig. 9. Stress relaxation in polyethylene B: (0, 0)  experimental valua; lower curve 
fitted by graphical analysis; upper curve calculated from relaxation spectrum. 
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Fig. 10. Stress relaxation in Marlex polyethylene: (0) experimental valuea; 
curve calculated from relaxation spectrum (derived from Bow curve). 
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identical and symmetrical) the following expression for the viscosity in 
simple shear flow has been derived: 

where a and @ are functions of molecular parameters. 
q = u/+ = gu/sinh(au) (1) 

According to Eyring's theory: 

and 

X is the average distance between the equilibrium positions (the width of 
the potential barrier), As is the distance between neighboring maleculea in 
the same direction atj X (direction of motion), XI the distance between 
neighboring molecules in the shearing planes'but perpendicular to the 
direction of motion, whereas XI is the analogous distance perpendicular to 
the shearing planes. 

2K0 is the total number of jumps per unit time across the potential 
barrier in both directions and in absence of any external force. In the 
most simple case 

K~ = ( k ~ / h )  exp { AS/~C) exp { - A H / ~ T  ) (3) 
where h is the Planck constant, k the Boltzmmn coqstant, and AS and 
AH the activation entropy and enthalpy, respectively. When the shearing 
is suddenly stopped, part of the molecules or molecular groups will occupy 
nonequilibrium positions. Reestablishment of equilibrium would result in 
a more or less important shear recovery if the external force is suppressed a t  
the same time as the shearing. If, on the other hand, the total shear de- 
formation is kept constant, as is the case in our experiments, shear stress 
will be gradually released as a result of the rearrangement of the molecules. 
Stress relaxation may be described by the general Maxwell formula: 

-du/dt = U / T  (4) 
where r is the relaxation time. 

In h e a r  theory 7 is considered as a constant, but in general, as already 
suggested by Maxwell himself, r will be a decreasing function of the stress. 
Eyring's theory of rate processes has been used to predict different expres- 
sions for the stress dependence of relaxation time. In one of the most 
recent publications" it is proposed that the stress dependence obeys a 
hyperbolic sine law: 

T = [2K0 sinh (au)]-' (5)  

This expression or its approximate form for high stresses where sinh 
(au) = exp { a n ] ,  is claimed to hold in certain cases, but it should 
logically break down for low stresses, since it predicts an infinitely long re- 
laxation time if the stress tends to zero. A more general expression may be 
derived if one assumes that at  constant total deformation all molecular 
jumps, independent of their direction, contribute to the relaxation of stress. 
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Adopting Eyring's onedimensional model, the jump frequency in the 
forward direction is equal to KO exp (au( and in the backward direction 
equal to KO exp { - au) . The relaxation time, supposed to be equal to the 
inverse of the total jump frequency, may be written now as: 

T = [2Ko cash (cYu)]-' (6) 
For small stresses, au << 1, and the relaxation time will be approximately 
constant: 

TO = 1/2Ko = bA/Xl (7) 
The value of the shear modulus as dehed by Maxwell : G = T / T  is given by 
eqs. (1) and (6): 

G = Xlu/htanh ( a ~ )  (8) 

According to eq. (8) the shear modulus increases with stress and tends to 
infinity, whereas the viscosity and the relaxation time decrease with stress 
and tend to zero [see eqs. (1) and (S)]. 

For small values of stress, au << 1, the shear modulus approaches a 
limiting value: 

Go = x1/xa (9) 

With the aid of eq. (8) the following expression for the recoverable shear 
strain during flow may be obtained: 

ye = u/G = @/XI) tanh (au) (10) 

Equation (10) shows that the recoverable shear strain increases with stress 
but, in contrast to the shear modulus, the recoverable strain approaches a 
limiting value r for very high stresses: 

Equations (6)-(11) can be used now to express the parameters of the non- 
linear model in terms of limiting values and of stress: 

T = TO/Cosh (u/GOI') (12) 

(13) G = u/I' tanh (u/Gor) 

r ]  = UTo/r sinh (u/GoI') 

ys = I' tanh (u/Gor) 

Brinkman and SchwarzlsJ' have developed a nonlinear theory of vis- 
CoeIasticity based on a similar onedimensional model in which the crossing 
of a potential barrier is considered as a diffusion process. This theory has 
been used to describe the creep behavior of a viscoelastic solid without ir- 
reversible flow. For very small stresses, the diffusion model behaves as a 
linear Kelvin-Voigt solid, but at higher stresses creep becomes nonlinear. 
If aJ1 potential barriers are identical and symmetrical, the nonlinear be- 
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havior in shear can be dmribed by the following expressions for the re- 
tardation time e and the compliance J: 

e = BO/cosh (uJo/c) (16) 

(17) 

(18) 

J (  = 1/G) = (Ju) tanh (uJO/e) 

7s = UJ = e tanh (uJo/e) 

The (elastic) deformation is equal to: 

where 
€ = l i m y ,  

a-+m 

80 and JO are the limiting values of the retardation time and the shear com- 
pliance for zero stress. Equations (16)-(19) are formally identical to 
those derived above for the nonlinear Maxwell liquid. In both cases non- 
linear behavior is described by the same hyperbolic functions of stress and 
limiting parameter values. 

It is well known that the linear viscoelastic behavior of many materials 
under small stresses cannot be accounted for by a single value of the time 
constant and the modulus (or compliance). A discrete relaxation spectrum 
or a continuous distribution function of relaxation times has generally to be 
introduced in order to describe the experiments. It will be shown in the 
next section that all experimental results reported in this paper can be 
satisfactorily described by means of a characteristic relaxation spectrum 
the stress dependence of which is given by eqs. (12) and (13). 

Jhpdmental Veriilcation of the Nonlinear Relaxation Theory 
It is generally assumed that the deformation of a macromolecular system 

results from translational and rotational displacements of more or less 
voluminous backbone segments and side groups. Each group of identical 
subu&ts is, a t  a given temperature, completely characterized by a re- 
laxation time (Tfo) and an elasticity modulus (GP) as far as linear behavior is 
concerned. In order to describe nonlinear behavior, a third parameter 
rr is necessary as shown by eqs. (12)-(15). This parameter is equal to the 
limiting value of the recoverable deformation of a subunit a t  infinitely high 
stress, and, according to Eyring's theory, i t  can be expressed as the ratio. 
X / h ,  which is equal to the ratio of the distance between two equilibrium 
positions in the direction of shear and the dimension of a subunit perpen- 
dicular to the shear planes. We have assumed, as a first approximation, 
that this ratio is equal to 1 for all subunits concerned. In that case the 
eqs. (20) and (21) should hold: 

In shear flow: 

u = Zur = ZG:Osinh-' (7:01j )  

-du/dt = -d2a:/dt = Z(a:/T:O) cash (U:/G:O) 

(20) 

(21) 

In relaxation at  constant deformation: 
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If uJGro << 1, the relaxation equation becomes, in a first approximation, 
linear: 

or 
(22) 

where u,(O) is the stress due to the ith group of subunits for t = 0. 
The observed relaxation curves for the lowest stresses, i.e., o(0) - 10' 

dynes/cm.*, have been decomposed in three or four exponential curves in 
order to calculate the relaxation spectrum according to eq. (22). In a 
semilogarithmic plot each exponential curve is represented by a straight 
line the slope of which is equal to - 1/r? and whose intercept on the ordinate 
is equal to In ur(0). The values of Gi0 have been calculated from eq. (20) 
which may be written as: 

-du/dt N ZO:/T:O 

u(t) = ZU~(O) exp { - t / T < o ]  

G,O = ur(0)/sinh-l (rro+) (23) 
For small stresses, i.e., in the approximately linear region, the eq. (23) may 
be reduced to: 

GiO N ( o ) i u / r ; O ~  (24) 

The values of T:O and G? obtcined in this way for a number of polymers 
are given in Table I. The variation of viscosity with rate of shear, as 
calculated from the relaxation spectrum, is shown in Figures 1 4 .  The 
curves in these figures have been calculated by means of the eq. (25) : 

7 = (l/+)ZGiO shh-' (25) 

It is obvious that the agreement between theory and experiment is re- 
markably good. 

The nonlinear relaxation curves in Figures 7710 have also been calcu- 
lated from the relaxation spectrum by means of a graphical integration of 
eq. (21) for each term: 

where Z(t) = u;(t)/GP and Z(0) = sinh-I (T?+). 
The value of the shear stress a t  any time is then obtained by summing 

up the calculated partial stresses: o( t )  =Zal(t). 
The most pronounced nonlinear behavior was observed in the case of the 

high density polyethylene Marlex for which no stresses low enough to be 
described by the linear relaxation eq. (22) have been attained. The re- 
laxation spectrum of this polymer, given in Table I, has been calculated 
from the observed flow curve (Fig. 5) by means of the trial-and-ehor 
method described by Ree and Eyring16 and by applying eqs. (7) and (9)) in 
which X/X, has again been assumed to be equal to l.* The relaxation 

* Ree sad Eyring have also defined a parameter z repreaenting the fractional m a  
on a shear surface occupied by a group of identical subunits. From an experimental 
point of view this parameter is inseparable from the shear modulus of a subunit. We 
have, therefore, assumed all zi's to be equal to 1 in accordance with the generally ac- 
cepted phenomenological treatments of viscoelaetic behavior. 

~~0 J$$) dZ/Z cash Z = t (26) 
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spectrum obtained in this way has been used to calculate the nonlinear 
relaxation curve of Figure 10, which appears to be in fair agreement with 
the observed relaxation behavior. The calculated nonlinear relaxation 
curves of Figures 7, 8, and 9 also show a rather good agreement with ex- 
periment. 

Discussion 
The nonlinear viscoelastic behavior of various polymer melts is shown to 

be adequately described by a discrete relaxation spectrum the stress de- 
pendence of which may be derived from the theory of rate processes. 
Until now, the validity of rate theory in the field of nowNewtonian flow of 
polymers had been demonstrated only in an empirical way, but the results 
reported in this paper show definitely that the characteristic parameters, in 
a first approximation, may be derived directly from relaxation experiments. 
However, these results could only be obtained by assuming that, for all 
deformation modes, the parameter I' is equal to 1. It is not obvious at  all 
that this assumption should be strictly valid for all polymers investigated. 
As a matter of fact, in some of the cases reported the agreement between 
flow and relaxation e w e s  would be still better if some of the rj)s were 
assumed to be somewhat different from 1. The limited accuracy of the 
experimental data, in particular those concerning the relaxation of stress 
does not permit us to make any firm statement about the real values of the 
rr%, but the data seem to suggest that the I'ls of the most voluminous flow 
units (which are associated with the longer relaxation times) may be some- 
what smaller than 1, whereas the I'ls of the smallest flow units (whose 
relative contribution to the stress increases with the rate of shear) might be 
larger than 1. 

As we have already shown, I' is equal to the limiting value of the re- 
coverable strain of the flow unit a t  infinitely high stress or, according to 
Eyring, equal to the ratio of the distance between two equilibrium positions 
in the direction of shear and the dimension of the flow unit perpendicular to 
the shear planes. At relatively high shear rates, flow is due principally to 
the displacements of small flow units; if these flow units are anisodimen- 
sional and oriented in the direction of shear I" might be larger than 1 which 
seems actually to be the case. C o n h a t i o n  of this hypothesis has, how- 
ever, to await more precise experimental results providing quantitative 
information on the value of r for the different flow units. Analysis of the 
flow curve in terms of the generalized Ree-Eyring equation: u = ZGtTj 
sinh-' (TP+/I',) will lead to a set of values for Giorj and Tf0/I'+ 

On the other hand, GP and T? may be evaluated directly from the 
(approximately) linear relaxation curve, as shown in this paper. In this 
way, two values (which, obviously, should be identical) will be obtained 
for every rj. It should be emphasized, however, that the graphical analysis 
of the flow c w e  is a rather inaccurate procedure which becomes practically 
impossible to handle in the case of closely spaced relaxation times. Graphi- 
cal analysis of the linear relaxation curve, on the other hand, is relatively 
simple although somewhat arbitrary.12 
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A sum of exponentials may, however, be resolved by means of mathe- 
matical procedures13-16; in fact, the relaxation spectrum of the polydi- 
methylsiloxane (see Table I) has been obtained by Prony’s method of 
analysis with the aid of a LGP-30 computer (Royal McBee) . The relative 
merits of this and other mathematical procedures are actually under study. 
As to the influence of temperature we have already shown in an earlier 

paper? that our experimental results are in agreement with Ree and Eyring’s 
analysis6 of a limited set of data obtained by other authors. 

In a temperature range between 150 and 30O0C., polymer flow may be 
described by a single value of the activation enthalpy at  constant stress 
(AH,) independent of temperature and independent of stress. This means 
that for the different flow units of a given polymer, the difference in re- 
laxation time is only due to a difference in activation entropy which, ac- 
cording to Ree and Eyring, should be explained by the fact that for large 
flow units the entanglement coupling of molecular chains belonging to 
adjacent units is more important than for the smaller ones. 

A second, somewhat more surprising conclusion may be drawn from the 
observed invariance of AH,. This means, in fact, that the moduli Gl are 
independent of temperature, at least in the range of temperatures investi- 
gated. If the elasticity of polymer melts is attributed to the presence of 
molecular entanglements (see below) the modulus should, according to the 
kinetic theory of rubberlike elasticity, be proportional to the absolute tem- 
perature if the number of entanglements were independent of temperature. 
This number will, however, decrease with increasing temperature and the 
latter effect appears to compensate exactly the theoretical increase of 
modulus. This will, of course, not necessarily be the case for higher 
temperatures where the moduli might be expected to be lower. 

Measurements of the complex shear modulus in polyethylene melts have 
recently been reported16 which also show a negligible small influence of the 
temperature on the real part of the modulus. 

In all molecular theories of polymer flow one admits17-20 the existence of 
transient networks whose junctions are attributed to molecular entangle- 
ments or secondary forces. The modulus of elasticity should then be equal 
to 9 9  

Go = mkT (27) 

where n is the number of network junctions per unit of volume and s the 
ratio of network chains to network junctions. If the junctions are tetra- 
functional, s is equal to 2. In terms of Eyring’s parameters the shear 
modulus of a flow unit is equal to: 

Go = dlCT/rXX& (28) 

as follows from eqs. (2), (9), and (11). 
The denominator in eq. (28) is of the same order of magnitude as the 

volume of the flow unit. A comparison of eqs. (27) and (28) might induce 
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one to consider the volume of a flow unit to be identical with the volume 
associated with a network junction. The molecular mechanism of polymer 
flow may then be depicted as follows. On shearing the polymer the net- 
work is strained, altering its configurational entropy and thereby giving 
rise to streas. Slippage and (ultimately) chain disentanglement in the net- 
work junctions leads to a continuous relaxation and recreation of stress 
during flow. The motion of all segments belonging to a network chain has 
to be coordinated in order to assure the contribution of the chain to the 
energy dissipation in the network. At low rates of shear this coordination 
can take place bver considerable distances (some thousands of Angstrom) 
but when the shear rate increases, the only configurational rearrangements 
able to keep paee with the imposed macroscopic deformation are those co- 
ordinated over shorter distances that are the shorter the hidher the shear 
rate. In other words, the total stress is to be considered M a sum of partial 
stresses, each of which is due to the deformation of a network having more 
or less widely spaced junction points. For increasing shear rates the 
relative contribution of the networks with most widely spaced junction 
points deweases gradually. Equally, the relative contribution of each net- 
work to the dissipated energy decreases gradually with increasing shear 
rate. Application of eq. (28) to the experimental results reported in this 
paper shows that the viscosity a t  the highest shear rates is principally due to 
the deformation of a network having junction points separated by about 
100 A. in the average. Referring to what has been said earlier about the 
probable value of r one might suppose that the average distance between 
the junction points of this network in the direction of shear is larger than 
the distance perpendicular to the planes of shear. 

After cessation of flow, the molecular chains will rearrange in order to 
adopt the most probable configuration compatible with the imposed, con- 
stantly held strain. This rearrangement will most rapidly take place by 
segmentd motions coordinated over small distances and leading to total 
release of atress in the networks with closely spaced junction points. Com- 
plete stress relaxation will only be reached after reestablishment of the most 
probable configuration of all molecular chains, by meam of a coordinated 
motion of widely spaced junction points. The mathematical formulation 
of the behavior of the transient network model has been developed in con- 
siderable detail by Yamamoto18 and, independently, by Lodge.1e Our 
discussion seems to suggest that the network theory may also furnish a 
molecular interpretation of the parameters in the Eyring-Ree relaxation 
theory if the activated state of the flow units is identified with the deformed 
state of p&rts of the transient network. Taking account of the fact that the 
activation enthalpy of all flow units is the same, in a first approximation, it 
does not seem necessary to mume that different flow units correspond to 
different networks, each characterized by the particulat nature of its 
junction loci. The existence of one single type of network might be as- 
sumed whose subdivision in more or less voluminous flow units is however 
not necessarily unique. 
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Although the behavior of the network, in that case, still might be de- 
scribed by means of a discrete relaxation spectrum, a detailed discussion of 
the observed spectra given in Table I is not yet warranted in view of the 
more or less arbitrary character of the analytical procedures employed. 
It is hoped that the mathematical methods actually under study will yield 
in the near future less ambiguous information on the relaxation spectrum. 
Arbitrary analysis of the experimental data might also be avoided by intro- 
duction of continuous distribution functions. 

Finally it should be remarked that in most of the polymers studied a 
particular kind of network appears to exist at  rest which breaks down as 
soon as the shear strain exceeds a certain limiting value. This phenomenon 
can be observed by following the evolution of stress during the first instants 
after application of the constant shear rate. Before attaining its equi- 
librium value the stress passes through a maximum, the difference between 
maximum and equilibrium value being the larger, the higher the shear rate. 
The limited number of observations effected so far seem to indicate that the 
maximum stress is attained for a certain characteristic value of the strain 
which is somewhat dependent on the shear rate. Similar observations have 
been reported by other authors21-2a in the case of polymer melts and solu- 
tions. The nature of the linkages forming this network has not yet been 
elucidated but it has been observed that the rate of reformation of the net- 
work is rather rapid, the time necessary to build up the thixotropic struc- 
ture after cessation of flow being in the order of 5-10 sec. for the vinyl 
polymers discussed in this paper. As the time necessary for breakdown is 
of the same order of magnitude, results of flow measurements in relatively 
short capillaries should be regarded with circumspection, especially at  high 
shear rates when the time spent in the capillary may be shorter than the 
time necessary for breakdown of the thixotropic structure. Apparent 
viscosity values obtained in this way will be substantially higher than the 
equilibrium values determined by mearis of, e.g., a cone-and-plate vis- 
cometer as used in our investigations. 

We wish to thank Mrs. J. Lesavre and P. Duffaud of thie laboratory for their analysis 
of some of the relaxation curves by means of Prony’s method, Dr. E. R. Howells (I.C.I. 
Plastics Division) for providing some of the samples, and Mr. R. Prechner for performing 
the experimental work. 
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synopis 
With the aid of Eyring’s rate theory a set of equations is derived describing the non- 

linear viecoelsstic behavior of a generalized Maxwell liquid in simple shear. It is 
shown that this behavior may be completely described by a stress- and temperature- 
dependent relaxation spectrum which, in a first approximation, becomes independent 
of stress if the latter tends to zero. Each term of the discrete relaxation spectrum is 
characterized by a relaxation time, a shear modulus, and a dimensionless parameter 
equal to the limiting value of a recoverable strain at infinitely high stress. All r l s  
disappear from the relevant equationd if the stress tends to zero. Similar expressions 
describing nonlinear behavior of a generalized Kelvin-Voigt solid may be derived from 
Schwarzl and Brinkman’s diffusion theory. The theory is used to interpret the ob- 
served nonlinear flow and relaxation behavior of a number of various polymer melts. 
The polymers have been studied under well-defined hydrodynamical and thermal 
conditions in a cone-and-plate Viscometer. In a first approximation, all rips have been 
supposed equal to 1. The theoretical flow and relaxation curves calculated from the 
observed relaxation spectrum are in fair agreement with the experimental ones. Finally 
it is shown that the observed behavior may also be interpreted in terms of the transient 
network theory if the activated state of a flow unit is identified with the strained state 
of more or leas voluminous parta of the molecular network in a polymer melt. 

RhUIIl6 
A partir de la th6orie d’Eyring, on d6duit un ensemble d’6quationa pour dkrire le 

comportement viscdlaatique non-lin6aire en cisaillement simple d’un liquide de Maxwell 
g6n6rSlis.6. On a pu montrer que ce comportement, peut &re compl&tement dkrit  par 
un spectre de relaxation d6pendant de la contrainte et de la temMrature, lequel devient en 
premibre approximation independant de la contrainte lorsque cette dernibre tend vers 
zero. Chaque terme du spectre discontinu de relaxation eat earact4ria6 par un temps 
de relaxation, un module de cisaillenient et un parambtre sana dimensions r Bgal B 
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la valeur limite d’une d6formation r6cup6rable pour des contraintea infiniment grmdea. 
Tous lea ri disparaissent dea Bquations pr6c6dentea si la contrainte tend vers z6ro. Des 
expressions analogues d6crivant le comportement non-lin6aire d’un solide de Kelvin- 
Voigt g6n6ralis6 peuvent btre d6duites de la th6orie de la diffusion de Schwarzl et Brink- 
man. La th6orie sert il interprbter 1’6coulement non-lin6aire observe et le m6cankme 
de relaxation de diff6rents polymbre fondus. Lee polymbrea ont 6t6 6t.udi6a dans des 
conditiona hydrodynamiquea et thermiques bien d6finiea B l’aide d’un Viscombtre B c8ne 
et plan. En lbre approximation, tous lea ri ont 6 6  supp& 6gaux B 1. L’6coule- 
ment th6orique et lea courbea de relaxation calcul6ea B partir du spectre de relaxation 
observ6 sont en accord avec lea valeurs exp6rimentalea. Enfin on a montr6 que le 
comportement observe peut Bgalement &re interpr6t6 B l’aide de la th6orie du r k a u  
transitmire. si l’btat activ6 d’une unit6 d’ecoulementest identi66 il 1’6tat dhform6 d’une 
maille plus ou moins grande du r h a u  mol&ulaire dans le polymbre fondu. 

Zusammenfassung 
Mit Hilfe der Eyringachen Geachwindigkeitatheorie wird ein Gleichungssystem 

abgeleitet, mit welchem das nichtlineare, Viskoelsstische Verhalten einer verallgemein- 
erten Maxwell-Fliieeigkeit bei einfacher Scherung beschrieben werden kann. Es wird 
gezeigt, dass dimes Verhalten vollstiin+g durch ein spannungs- und temperaturab- 
hiingigea Relaxationeapektrum beschrieben werden kann, das in erster Niiherung bei 
Anniiherung an die Spmung  Null von der Spannung unabhangig wird. Jeder Term 
des diskreten Relaxationeapektrums wird durch eine Relaxationszeit, einen Schubmodul 
und einen dimensionslosen Parameter ri entsprechend dem Grenzwert der reversiblen 
Verformung fur unendlich gosse Spannung, charakterisiert. Wenn die Spannung gegen 
Null geht, verschwinden die Ti-Werte aus den entsprechenden Gleichungen. xhnliche 
Ausdriicke konnen fiir das nichtlineare Verhalten einea verallgemeinerten Kelvin- 
Voigt-Festkorpers aus der Diffusionstheorie von Schwarzl und Brinkman abgeleitet 
werden. Die Theorie wird zur Deutung dea beobachteten, nichtlinearen Fliess- und 
Relaxationsverhaltens einer Reihe verschiedener Polymerschmelzen beniitzt. Die 
Polymeren m d e n  unter wohldefbierten hydrodynsmischen und themkchen Bedin- 
gungen in einem Kegel-Platteviskosimeter untersucht. In erster Anniiherung wurde 
angenommen, dass alle ri-Werte gleich eins sind. Die aus dem beobachteten Relax- 
atiompektrum berechneten theoretischen Fliess- und Relaxationskurven stimmen mit 
den experimentell erhaltenen gut iiberein. Schlieselich wird gezeigt, dasa das beobach- 
tete Verhalten auch rnit der Theorie der instabilen Netewerkbildung erkliirt werden 
kann, unter der Voraussetzung, dass der aktivierte Zustand der Fliesseinheit mit dem 
verformten Zustand mehr oder weniger voluminiiser Teile des Molekiilnetewerkes in 
einer Polymerschmelze identi6ziert wird. 
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